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Perturbation Analysis of Electromagnetic
Eigenmodes in Toroidal Waveguides

Klaus W. Kark

Abstract —The propagation of electromagnetic waves in a loss-free
inhomogeneous hollow conducting waveguide with circular cross section
and uniform plane curvature of the longitudinal axis is considered. The
explicit solution of Maxwell’s equations cannot be given in toroidal
waveguides. For small curvature the field equations can, however, be
solved by means of an analytical approximation method. In this approx-
imation the curvature of the axis of the waveguide is considered as a
disturbance of the straight circular cylinder, and the perturbed torus
field is expanded in eigenfunctions of the unperturbed problem. Using
the Rayleigh—Schrodinger perturbation theory eigenvalues and eigen-
functions containing first-order correction terms are derived for the fall
spectrum of all modes including the degenerate ones. Complicated series
expansions are obtained, which are represented in closed form by means
of the residue theorem.

1. INTRODUCTION

HE problem of soilving Maxwell’s equations in toroidal

waveguides has already been treated by several authors,
since the subject has many different applications. The former
H,; hollow waveguide project gave rise to the computation
of the unwanted H, — E;; mode conversion caused by
curved transmission lines [5), [13]. Nowadays, an analogous
practical use of toroidal structures is found in modern opti-
cal fibers [14]). Moreover, toroidal hollow waveguides are
applied as antenna feeds or as closed resonators in particle
and plasma physics [2].

A rigorous solution in closed analytical form of Maxwell’s
equations in toroidal waveguides via a transformation into
the vector Helmholtz equation and Bernoulli separation can-
not be obtained, since there is no suitable coordinate system
[16]. If one represents the field vectors in a Cartesian system,
then the vector Helmholtz equation separates into three
scalar Helmholtz equations [4]. This, however, produces great
difficulties when satisfying the boundary conditions at the
surface of the torus. The fundamental crux seems to be that
the toroidal geometry permits no strictly TM (E) or TE (H)
eigenmodes, as is the case in cylindrical coordinates. An
important exception is the so-called toroidally uniform case,
in which the solution is independent of the longitudinal
coordinate. These uniform solutions represent standing waves
with only three field components in closed toroidal cavity
resonators. Owing to this simplification, many calculations of
toroidal modes are restricted to the uniform case [11], [12].
However, in a toroidal waveguide section, which will be
considered in this paper, fields form traveling waves and
there are always modal fields with generally six field compo-
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nents. These fields can be determined by using either numer-
ical methods [8] or analytical series expansions.

The following analytic approach introduces a second com-
plex plane which allows a decoupling of Maxwell’s equations.
A scalar inhomogeneous wave equation for the bicomplex
field strength is in this way obtained. The solution to this
equation can be found using the Rayleigh—Schrédinger per-
turbation theory [20] via a power series expansion refering to
the inverse aspect ratio 8 =a /R (a being the minor and R
the major torus radius—Fig. 1). It can be expected that the
perturbation theory will produce good accuracy for slightly
bent torus waveguides for which the inverse aspect ratio is
small, 0 < 8 < 1. This paper considers the full spectrum of
all toroidal modes with eigenvalues and eigenfunctions in-
cluding the perturbation terms of first order O(8). Following’
an idea from [12], the resulting series expansions for the field
strengths can be rewritten in closed form via a pole series
transformation using the residue theorem, as will be shown
later.

I1. Tue HeLMHOLTZ EQUATION
A. The Local Toroidal Coordinate System (p, ¢, s)

The following procedure makes it possible to compute
wave propagation effects in loss-free hollow conducting
waveguides with local circular cross section and piecewise-
uniform curvature. The total waveguide circuitry may consist
of a limited number of separate pieces, as shown in Fig. 2.
The planes of curvature of these particular hollow wave-
guides need not coincide; thus the total combination can
produce a helixlike curvature in space. As shown in Fig. 2,
the curvature may also be zero (R; — ). This paper deals
only with wave propagation phenomena inside one curved
part as an element of the total circuitry. The so-called local
or quasi-toroidal coordinate system conforms to the metallic
boundaries and reduces, in the case of infinitesimal curva-
ture, to the common circular cylinder coordinate system.
Thus the straight circular cylinder is obtained as a limiting
case of the curved structure. Fig. 1 gives the relationship of
the local toroidal coordinates (p, ¢, s) with the rectangular
coordinates (x,y, z). Using the transformation p=ga £ and
s = Ra, with p as quasi-radial length and s as longitudinal
coordinate measured along the curved axis, one obtains

Xx=Rhcosa y = Rhsina z=afsing
with the metric coefficient h(£,¢)=1—38¢cose and the
inverse aspect ratio 8 = a /R, where a is the minor and R
the major radius of the torus; ¢ is the poloidal and « the
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Fig. 1. Torus with coordinate systems: rectangular coordinates (x, y, z)
and local toroidal coordinates (p, ¢, s) as generalized coordinates of the
straight circular cylinder. The inverse aspect ratio is § =a /R.

Fig. 2. Inhomogenecous waveguide circuitry consisting of » regions
with circular cross section and locally constant curvature 1/R,,.

toroidal angle. The interior of the torus is described by
values of 0 < £ < 1.

B. The Field Equations

If we confine the considerations to uniformly curved wave-
guides all field components get the exponential factor
e/@?B5) which is omitted in the following computations. We
use £ =hE and H = hH, as abbreviation for the longitudi-
nal field components multiplied by the metric coefficient A.
Then Maxwell’s equations in local toroidal components,

oF ) ) oH ) )
% +JjBaE,= — jophaH, % +JjBaH, = jwehak,
. aE v I3 6H . nl
—JjBak, - E =— jophaH, —jBaH, - E = joehak,
hé(EE,) hoE ,
T ap CJewtad
hi(EH hoH
—( ‘P) ——L = jwetaE (1)
9 g

are transformed by elimination of the transverse fields E,,,

E,, H, and H, similar to [2], but with some change in
notation. The resulting equations are thus given here in a
more compact and clearer matrix-operator description:

aon(g)-o 3 PlE)

where Z=+y/u /e is the characteristic impedance in free
space. Equations (2) are the required coupled longitudinal
equations; their perturbational treatment plays the central
role in this paper. The explicit expressions for the differen-
tial operators (A, being the transverse Laplacian) are given
by the following equations:

@)

a é 82
A'=zaz(f£)+_w¢z
_ 1+ 52 8 sing 4
Ll—————h(l_yz)(—cosqo£+—§—a—¢;)
-2y . d cosg 9
b et ] O

where v is the dimensionless quantity y(&, @) = B /(kh(£, ¢))
and k = wype is the wavenumber. The coordinate depen-
dent parameter

ME,0) = (ka) (1-v2(&,0)) = (ka) = (Ba)’/h*(£,0)

is related to the as yet unknown propagation constant g [10],
which is in fact the true eigenvalue of the eigenvalue prob-
lem (2). Since B appears not only in A but via y also in ;
and L,, the toroidal waveguide defines a nonstandard eigen-
value problem [17] which is not of the typical Sturm-Liou-
ville form [18]. A method of dealing with such unusual
problems will be shown below.

The differential operator L, couples only modes of the
same type (EE or HH coupling), and L, those of different
type (EH or HE coupling). In the closed toroidal cavity
resonator there exists the particular case of toroidally uni-
form solutions (9 /ds =0, i.e., B =0), where L, vanishes in
(3) since y = 0. So the differential equation system (2) decou-
ples, the E or H modes with only three field components are
found. The resulting decoupled equations are identical to
those published in [11]. As the coupled system (2) shows,
there in contrast exist only hybrid EH (quasi-E) or HE
(quasi-H) modes in the toroidal hollow waveguide with, in
general, six nonzero field components, which are derived in
the following section. Indeed, first of all the field equations
are transformed to a more compact form. Generally, the
coupled system of differential equations can be written as
two decoupled differential equations of fourth order. To
avoid their extremely cumbersome treatment a bicomplex
field function F is introduced [21]:

F=E+iZH=h(EA+i\/—'U:HS).
€

The function F allows a full decoupling of the field equa-
tions (2). Thus a scalar inhomogeneous Helmholtz equation

(A, +A)F=8LF (5)

is obtained with the new differential operator L =L, —iL,

(4)
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and the boundary conditions
E| 0 o 0
=1 = =
s f af f -

It should be pointed out that (5) has been deduced without

any restrictive assumptions concerning the value of the in--

verse aspect ratio § = a /R €[0,1]. The i complex plane thus
introduced must be strictly distinguished from the j complex
plane, which is commonly applied for a more elegant de-
scription of the time dependence (cos wt — ¢’“*) using com-
plex phasors. The following relations should be pointed out
[9]: i?=—1, j>= —1 and the commutative product of both
imaginary umits is § = ji # —1. A separation of the hypo-
thetic field F into the physically relevant observables E and
H is easily done by taking the real and imaginary parts of I
in the i complex plane.

In the following section the generally valid inhomogeneous
bicomplex Helmholtz equation (5) is solved by a first-order
perturbational treatment valid for small values of delta with
0<dx.

III. PERTURBATION COMPUTATION OF EIGENVALUES
AND EIGENFUNCTIONS

The basic idea in solving the inhomogeneous Helmholtz
equation (5) is to regard the terms caused by curvature as a
perturbation of the equation for a hollow conducting wave-
guide with straight axis. For small values of 8 the eigenval-
ues and eigenfunctions in the torus must proceed continu-
ously from the solutions of the unperturbed differential
equation (8 = 0) with increasing perturbation (8 > 0).

A. The Homogeneous Helmholtz Equation

In the straight circular cylinder (6 =0) the Helmholtz
equation (5) is reduced to

(A, + X)) FO =0, (6)

This eigenvalue problem has a well-known solution. The
solution is divided into E,,, and H,,, eigenmodes, each with
five field components. Combining all double indices to one
(mn 2 v or pg = p) and with AQ = 72, (6) delivers the unper-
turbed eigenfunctions

1
FO = 0,1, ) 8(9). (7)

14

The corresponding eigenvalues 7, =17,,,=j,, Or jj, are
zeros of the Bessel function of the first kind, J,(J,,,}=0, or
its derivative, J/(j.,,) = 0. The eigenfunctions build a com-
plete orthonormal set. The condition

1 forv=p

1 2m
O ) — _
[ R det e =s, {0 ot @)

defines the normalization constant N, using the Kronecker
delta 8,,, where F” must be conjugated in the i complex
plane. The condition v = & means in detail m = p and n=gq.
The azimuthal field dependence is described by trigonomet-
ric functions:

cos me . —sinm
(@)= {Game ]  Wih o) ={ Tiime ) ©)

of even or odd symmetry. The notation in (9) using braces

does not indicate a vector, but rather the modal orientation
connected with the upper or lower functions. Every E,,,, and
H,,, mode has a twofold degeneracy, since transverse field
components of a given mode may be either symmetric or
antisymmetric relative to the x—y plane (see Fig. 1). These
two solutions belong to the same eigenvalue in the straight
circular cylinder. In view of their different symmetry they can
be treated separately, which permits one to use the (much
simpler) perturbation theory for nondegenerate modes. In
the straight circular cylinder there exists an additional de-
generacy, H, — E,,, which occurs because of the eigenvalue
identity j4, = j;,- The perturbational treatment of this de-
generate case will be done separately. First, the perturbation
terms of all nondegenerate eigenmodes will be computed.

B. Nondegenerate Rayleigh—Schridinger Perturbation Theory
of First Order

Because of the perturbation (curvature of the axis) every
cylindrical eigenmode with five field components is continu-
ously transformed to a torus mode with six field components
and the same transverse symmetry. These new toroidal
eigenmodes cannot be represented in closed form but they
can be approximated by a series expansion. For small pertur-
bation (8 << 1) the nature of the field distribution of all
nondegenerate eigenmodes will be changed only very slightly.
Because of the perturbation the second longitudinal compo-
nent (H, or E,) that is missing so far will appear. Thus,
hybrid modes with six field components are derived, which
can be classified as quasi-E (EH) and quasi-H (HE) modes
[2]. ‘

To solve (5), a linear perturbation expression for the
bicomplex field function F, and the square of the normalized
propagation constant n, = (8,a)? can be used:

F,=F9 +8FV +0(8%)

n, =0+ 80"+ 0(8%). (10)
The unperturbed solutions are F® as in (7) as E,,, or H,,,
mode of the straight circular cylinder and n{®¥ = (ka)* — 72.
With B, = B + 88(" + 0(8?) the perturbation of the prop-
agation constant is easily found to be

48]
n
B(l)a = Y

v zﬁ‘g_))

The correction terms F{" and n‘" can be determined in
the following way. After substituting (10) into the inhomoge-
neous Helmholtz equation (5) and neglecting all terms of
second order O(8?%), one obtains a differential equation for
the determination of the perturbed fields:

(11)

(A, +72)FEO = (L +n")F® (12)
with the perturbation operator L= L+2nY¢cos . The
perturbation term F" can be expanded in terms of unper-
turbed eigenfunctions [20]:

F= e, FO. (13)
w

By applying the orthonormal property (8), the following
first-order solution is derived after some short transforma-
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tions:

n, =0 — 8W,,

W
0 [aid 0
F,=F®+5 Y *5FO.
/.L#vTV T[.L

(14)

The coupling integrals W,, (or W,, for 4 =v) can be repre-
sented in the form of inner products

W,,=(F®,LE®) = /; ' N ZWOF‘EO)*I:F,,‘O) de£de. (15)
=0/p=

The summation in (14) is performed over all u except u=v

(i.e., p=m, g = n), which directly follows from the normal-

ization condition for the perturbed eigenfunction (F,, F,) = 1.

A more detailed description to determine the perturbed

eigenfunction solution can be found in [1], [3], or [19].

The determination of the coupling integrals W, is cum-
bersome but feasible. It can be shown that the coupling
coefficients representing the self-contribution W, , = 0. This
means that the propagation constants 8, of all nondegener-
ate circular cylinder eigenmodes are not altered in first-order
O(8) within the toroidal waveguide.

C. Degenerate Rayleigh— Schridinger Perturbation Theory of
First Order

The only new idea of the degenerate perturbation theory
is finding those linear combinations of the unperturbed
degenerate eigenfunctions which continuously result from
the perturbed eigenfunctions with decreasing perturbation.
There exists an infinite set of pairs of degenerate eigen-
modes. For n=1,---,» we have with 7, = jj, = j;,, the fol-
lowing pairs of degenerate eigenfunctions:

FP = ———so(en)
Hor \/;JO( Tn) 0 "

3 i
o___'=Z sin ¢
FEM ‘/77‘,1,(7”) Jl(ng){ COS(P}'

Relative to the equatorial plane of the torus (see Fig. 1) we
will call the symmetrical field function (o cos¢) the Ej,
mode and the antisymmetrical (o —sin ¢) the E{, mode,
respectively. For a pair of modes with fixed index n, we
make a thus far unknown orthogonal substitution F® [20]:
FO=b F + by FL. (16)
F©® must be normalized (see (8)); thus a first condition for
the unknown { complex constants is found:
16,1 + 1B,/ =1. (17)
For the wanted orthogonal substitution (16) the same pertur-
bation expression is used as in the nondegenerate case (10).
The unknowns are, again, F{" and 5" as well as the
constants b, and b,. For v=n, (10) to (15) analogously

apply to the degenerate case as well. After a lengthy but
straightforward computation [6], the perturbation of the

propagation constant 8 is found, which leads to

ka

Da+8 +0(8%) for E{, modes
Bra={"" 7, O : (18)

BPa + 0(8?) for E{, modes
with 8@ =1/ (ka)?— 72. In addition the computations de-

liver the ratio b, /b, = +1 for the E{, mode, from which,
together with the condition (17), the constants b, and b, can
be determined, except for an unimportant phase factor. The
perturbation theory also shows that a hybrid modal expres-
sion as in (16) makes no physical sense for the E{, mode,
which appears to be quasi-stable. It does not degenerately
couple to the Hy, modes; therefore the computations of the
nondegenerate perturbation theory are still valid for it. For
the antisymmetrical E{,, mode, in contrast, the formalism of
the degenerate perturbation theory must be used. It strongly
couples (even for the weakest curvature) to the H,, mode,
building a degenerate hybrid pair of modes:

F,fo) =

(19)

1
7 (Fi £ FER).

Summarizing this section, we obtain with kao) from (7) the
perturbed eigenfunctions in first order O(8) of the nth
degenerate hybrid wave pair (compare with (14)):

E® [FO
Ex=F%+s Y} —(’:_—Z_:TJF‘EO). (20)
Ty T, n I

The degenerate eigenfunctions of the new transformed basis
(19) undergo, as (18) shows, a “level splitting” for nonvanish-
ing perturbation; thus the degeneracy is removed. Finally, a
closed-form representation of the field intensities of the
toroidal modes is given in the next section.

IV. THE Torus FieLp
A. Series Representations

Starting from the series expansions for the perturbation of
the eigenfunctions derived above, which are lengthy and
cumbersome, a method of finding compact, closed expres-
sions for the torus fields is outlined in this section. The
double sums over all u = pg with p=m+1land g=1,---,»
in (14) and (20) can be substantially shortened by summing
the inner perturbation series over all g, which can generally
take the following two forms:

S, = i qu ‘Ip(fqu)
E= T
g=1 (T,,z—j,%,,)w IT5(ipg)
. X .
d Ipq JAET,
S”= Z ( Il) I(g I‘l) (21)

= (2= i) (7~ 02) Do)

with 7, =, or j;  and the exponents ¢y =2 or3 and y =2
or 4. A closed-form representation of the series expansions
(21) is found by means of the residue theorem using the
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Fig. 3. Path for the residue integral for the transformation of the pole
series (21).

following complex functions:

(2)= z J,(€2)
gelZ2)= (T,,Z—Zz)w ]p(z)
x—2
z J,(£2) 22)

g’H(Z)= (TVZ_ZZ)(,, Jg(Z) s

where z defines a third complex plane (z=x+Jly with
12 = —1), different from the others (i* = —1, j? = —1) intro-
duced earlier. Considering the closed line integral in Fig. 3
with the integrands gg(z) and g,(z) from (22), one obtains
with the residue theorem of function theory [18]

¢gE,H(Z) dz:z’“'lzk:Res{gE,H(Zk)} (23)
C

taken at the isolated singularities z,. The integrands are
antisymmetrical on the imaginary axis (z = + ly). Thus, the
integral between P; and P, vanishes. Also, the Jordan
lemma [18] shows that the integral along the half-circle
makes no contribution. So, -splitting the residual series (23)

0=Res{gr n(z)}:=r, + > Res{gp 1(2)}z =1,
q

yields a closed-form summation of the unknown pole series
(21). Computing the residues at the simple Zeros 7, of the
Bessel functions in the denominator of gg ,(z) (see also
{11]) leads to Sg and — Sy; thus,

Sg=—Res{gg(2)}|:=, Sy =Res{g,(2)}|:=-,.

Computing the residues at the poles of order ¢ is straight-
forward but tedious and cumbersome. The closed-form ex-
pressions reached in this way for the pole series S, and §,
from (21) replace the perturbation series (14) and (20) in the
field representations, the final form of which will be given in
the next section.

B. Closed-Form Expressions of First Order

After splitting the bicomplex field function (4) into real
and imaginary parts in the [ complex plane, the physically
relevant field intensities are obtained. In the following, the
longitudinal field components multiplied by the metric coef-
ficient h(¢,¢) are given (E=hE,, H=hH). The corre-
sponding transverse fields can simply be deduced by some
derivatives using Maxwell’s equations (1).

1) EH Modes (Nondegenerate Theory): The following field
representations are valid for every hybrid EH,,, torus mode,
which results from a perturbation of a nondegenerate E,,,
eigenmode of the straight circular cylinder, including the
symmetrical E{, mode but without the antisymmetrical E{,
mode:

1
E= N—rfnJm(Jmnf)q)m

T 22 NE {(2( ka)z'" J',Znn)ffm( Jmn ) cOS @@,

mn mn

+ (Bﬁna)z[%fm( Jmn€)(1+ £2) sin p®y,
- ]anr;l(]mng)(l - 52) Cos <p<1)m]}

kaBr.a . :
ZH = - {]mn‘]r;l(]mn'bc)

Jmn(m*=1)NE,

[ m cos @, +sin oD, ]

1
+ E‘Im(]mng) [(52 + m2(1 - fz))SiH ‘P(bm

+ m cos go(b,;,]}

where NE, is the normalization factor, given by

E 1 : m
Nmn= m(-}mn) E(1+6m0)‘

Here BE,a=1/(ka)’-j2, is the normalized propagation
constant, and the poloidal eigenfunctions ®,, and ®,, are
given by (9). The magnetic longitudinal field strength espe-
cially for the E{, mode with m =1 results in

dkaBl,a

ZH = ~
2  NE

[h" J2(J1n€) - §Jl(11n§)} sin2e.

2) HE Modes (Nondegenerate Theory): The hybrid HE,,,
torus modes, which result from a perturbation of nondegen-
erate H,,, eigenmodes of the straight circular cylinder, ex-
cept the H,,, mode, can be obtained in a way similar to that
for the EH,,, modes. The explicit expressions are shown in
[6].

3) Degencrate Mode Pair F,*: Finally, the explicit expres-
sions for the longitudinal field components multiplied by the
metric coefficient A(£, @) are shown for the degenerate hy-
brid mode pair F,;* (see (20)), with which the unwelcome
mode conversion H,, — E,; in circular hollow waveguide
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Fig. 4. Transverse magnetic field lines for the Ey; mode in the straight
circular cylinder (8 = 0; left) and for the corresponding EH,, mode in
the toroidal waveguide (6 = 0.027; right).

transmission lines can be described:

1

E*=F I(mé)sin () + o {(ka) 6 11(mé)
+(BOa) [ 7,(1— £2)Iy(7,8) +3¢0,(7,8)] }sin (2¢)
L1 8 S
ZH*= ﬁNnJO(T"f)_m{(Im) V2EI{(7,£)cos ¢

+(BOa)VZ [1,(1- €2)Jy(1,6) + £1{(7,6) ] cos o

+ kaBPa[267,(7,£) — 7,05(7,€)] cos2¢)

with 7, = jj,, = j,,» the normalization constant N, =V J{(r,),
and the normalized propagation constant

BPa = Vv (ka)z— T2,

V. FiELD CONCENTRATION AND ENERGY SHIFT

For a better physical understanding of the wave propaga-
tion phenomena in toroidal hollow conducting waveguides,
plots of the perturbed field distribution are compared with
those for the straight circular cylinder. The magnetic field
lines in a transverse section (s = const., ka = 6) are shown in
Fig. 4 for the E;; mode, whereas the transverse distribution
of the longitudinal component of the Poynting vector,

1 -
Ps(f,cp)=5Re{E,><H,*}~es (24)
is displayed in Fig. 5 with the transverse field vectors E, =
(E,,E,) and H,=(H,, H,). To draw the field lines, an
algorithm from [7] was applied. The intensity in the energy
flux increases from lighter to darker shade with linear quan-
tization. Both diagrams indicate a considerable displacement
of the field lines as well as of the energy flux toward the
outer boundary of the waveguide away from the center of
curvature (located at the right-hand side of the images) as
the curvature increases. There appears a remarkable en-
hancement of the time-averaged energy-flux density P, in the
outer cross-sectional domain, while in the inner an evident
reduction can be seen. This leads to an unsymmetrical en-
ergy-flux distribution in the toroidal waveguide. Correspond-
ing diagrams are shown in Figs. 6 and 7 for the H{, mode. It

Fig. 5. The energy-flux density: transverse distribution of the longitu-
dinal component P, of the Poynting vector (see (24)) for the E,; mode
in the straight circular cylinder (8 = 0; left) and for the corresponding
EH,, mode in the toroidal waveguide (6 = 0.027; right).

1,0 T
I
061
0,41,
0,2
0
-0,2
=04
-06r
-0,8}

_1‘0 1 1 1 1
-0 -05 0 05 10-0 -05 0 05 10

Fig. 6. Transverse electric field lines for the symmetrical H{; mode in
the straight circular cylinder (8 =0; left) and for the corresponding
HE], mode in the toroidal waveguide (8 = 0.02; right).

I

Fig. 7. The energy-flux density: transverse distribution of the longitu-
dinal component P, of the Poynting vector (see (24)) for the symmetrical
H{; mode in the straight circular cylinder (8 = 0; left) and for the
corresponding HE{; mode in the toroidal waveguide (6 = 0.02; right).

is the lowest mode in the homogeneous circular waveguide
and shows a similar field shift behavior compared with the
Ey; mode. Finally, the degenerate E{, mode is shown in
Figs. 8 and 9.

The lowest five circular waveguide modes (H,y, Ey, Hyy,
Hyg,, E| ) have been examined with respect to their perturbed
behavior in the toroidal waveguide with the same outward-
directed displacement effect always observed [6]. This agrees
with the results in [15], where a field and energy shift toward
the outward direction of bending was also observed for these
five modes, although in [15] the possibility of an inward-
directed shift for other modes (e.g., Hs,, Hy) was men-
tioned.
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Fig. 8. Transverse magnetic field lines for the antisymmetrical E7
mode in the straight circular cylinder (8 = 0; left) and for the corre-
sponding EH{j mode in the toroidal waveguide (8 = 0.042; right).

Fig. 9. The energy-flux density: transverse distribution of the longitu-
dinal component P, of the Poynting vector (see (24)) for the antisym-
metrical Ef; mode in the straight circular cylinder (8 = 0; left) and for
the corresponding EH{; mode in the toroidal waveguide (8= 0.042;
right ). ’

VI. CoNCLUSION

Toroidal waveguides are applied as transitions in hollow
waveguide circuitries; as feed lines of microwave antennas,
and as closed resonators in accelerators and fusion power
plants. A problem in which toroidal waveguides are regarded
as a case of perturbed circular cylinders has been treated.
The influence of a weakly curved longitudinal axis has been
studied in detail. The slightly curved longitudinal axis per-
mits an approximate solution of the field equations starting
from the well-known eigenmodes of the straight circular
cylinder. With a first-order perturbational approach, field
correction terms have been derived in a closed-form repre-
sentation. The theory developed can be further extended to
certain other geometrical distortions of the cylindrical sym-
metry. Nonuniform curvature, serpentine bends (see Fig. 2),
and torsion ‘'may be of interest. In addition the approach
presented here opens the way to the more general problem
of inhomogeneous waveguides with impedance boundaries or
with plasma filling.
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